Abstract

The perturbing effect of a waveguide on the boundary of a quasispherical cavity resonator is investigated both theoretically and experimentally. Expressions for the frequency perturbation to the triply degenerate TM1mn and TE1mn modes are derived using cavity perturbation theory. The fields in and around the waveguide are calculated in the static limit using finite-element software. Experiments performed using quasispherical and cylindrical cavity resonators confirm the accuracy and generality of the approach. The impact of this study on attempts to re-determine the Boltzmann constant (kB) by an acoustic resonance technique is briefly considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call