Abstract
Previous papers have shown how, for rotationally symmetric optical imaging systems, nodes in the field dependence of the wavefront aberration function develop when a rotationally symmetric optical surface within an imaging optical system is decentered and/or tilted. In this paper, we show how Shack's vector product (SVP) can be used to express the wavefront aberration function and to define vectors in terms of the Zernike polynomials. The wavefront aberration function is then expressed in terms of the Zernike vectors. It is further shown that SVP fits within the framework of two-dimensional geometric algebra (GA). Within the GA framework, an equation for the third-order node locations for the binodal astigmatism term that emerge in the presence of tilts and decenters is then demonstrated. A computer model of a three-mirror telescope system is used to demonstrate the validity of the mathematical development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Optical Society of America. A, Optics, image science, and vision
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.