Abstract
We consider the epipolar geometry between two omnidirectional images acquired from a single viewpoint catadioptric vision sensor with parabolic mirror. This work in particular deals with the estimation of the respective epipoles. We use conformal geometric algebra to show the existence of a 3×3 essential matrix, which describes the underlying epipolar geometry. The essential matrix is preferable to the 4×4 fundamental matrix, which comprises the fixed intrinsic parameters, as it can be estimated from less data. We use the essential matrix to obtain a prior for a stochastic epipole computation being a key aspect of our work. The computation uses the well-tried amalgamation of a least-squares adjustment (LSA) technique, called the Gauss-Helmert method, with conformal geometric algebra. The imaging geometry enables us to assign distinct uncertainties to the image points which justifies the considerable advantage of our LSA method over standard estimation methods. Next to the stochastically optimal position of the epipoles, the method computes the rigid body motion between the two camera positions. In addition, our text demonstrates the effortlessness and elegance with which such problems integrate into the framework of geometric algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.