Abstract

Wave vector filtering effect is explored for electrons in magnetically and electrically confined semiconductor heterostructure, which can be realized experimentally by depositing a ferromagnetic stripe and a Schottky metal stripe in parallel configuration on the surface of [Formula: see text] heterostructure. Adopting improved transfer matrix method to solve Schrödinger equation, electronic transmission coefficient is calculated exactly, and then wave vector filtering efficiency is obtained by differentiating transmission probability over longitudinal wave vector. An obvious wave vector filtering effect appears, due to an essentially two-dimensional process for electron transmission through a magnetic nanostructure. Besides, wave vector filtering efficiency is associated closely with width, position and externally applied voltage of Schottky metal stripe, which makes wave vector filtering effect become controllable and results in a manipulable momentum filter for nanoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call