Abstract

We present a theoretical study of linear wave scattering in one-dimensional nonlinear lattices by intrinsic spatially localized dynamic excitations or discrete breathers. These states appear in various nonlinear systems and present a time-periodic localized scattering potential for plane waves. We consider the case of elastic one-channel scattering, when the frequencies of incoming and transmitted waves coincide, but the breather provides with additional spatially localized ac channels whose presence may lead to various interference patterns. The dependence of the transmission coefficient on the wave number q and the breather frequency Omega(b) is studied for different types of breathers: acoustic and optical breathers, and rotobreathers. We identify several typical scattering setups where the internal time dependence of the breather is of crucial importance for the observed transmission properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.