Abstract

For a one-dimensional linear lattice, earlier work has shown how to systematically construct a slowly- decaying linear potential bearing a localized eigenmode embedded in the continuous spectrum. Here, we extend this idea in two directions: The first one is in the realm of the discrete nonlinear Schrödinger, where the linear operator of the Schrödinger type is considered in the presence of a Kerr focusing or defocusing nonlinearity and the embedded linear mode is continued into the nonlinear regime as a discrete solitary wave. The second case is the Klein-Gordon setting, where the presence of a cubic nonlinearity leads to the emergence of embedded-in-the-continuum discrete breathers. In both settings, it is seen that the stability of the modes near the linear limit turns into instability as nonlinearity is increased past a critical value, leading to a dynamical delocalization of the solitary wave (or breathing) state. Finally, we suggest a concrete experiment to observe these embedded modes using a bi-inductive electrical lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.