Abstract

The wave propagation modeling in cylindrical human long wet bones with cavity is studied. The dynamic behavior of a wet long bone that has been modeled as a piezoelectric hollow cylinder of crystal class 6 is investigated. An analytical solutions for the mechanical wave propagation during a long wet bones have been obtained for the flexural vibrations. The average stresses of solid part and fluid part have been obtained. The frequency equations for poroelastic bones are obtained when the medium is subjected to certain boundary conditions. The dimensionless frequencies are calculated for poroelastic wet bones for various values for non-dimensional wave lengths. The dispersion curves of the dry bone and wet bone for the flexural mode n=2 are plotted. The numerical results obtained have been illustrated graphically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.