Abstract

We study wave front propagation in spatially discrete reaction-diffusion equations with cubic sources. Depending on the symmetry of the source, such wave fronts appear to be pinned or to glide at a certain speed. We describe the transition of travelling waves to stationary solutions and give conditions for front pinning. The nature of these depinning transitions seems to be preserved in higher dimensions. Finally, we discuss the different behavior observed when inertial terms are included in the model.KeywordsSolitary WaveWave FrontPropagation FailureTravel Wave FrontDiscrete MediumThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.