Abstract

This article addresses wave propagation in carbon nano-tube (CNT) conveying fluid. CNT structure is modeled by using size-dependent strain/inertia gradient theory of continuum mechanics, CNT wall-fluid flow interaction by slip boundary condition and Knudsen number (Kn). Complex-valued wave dispersion relations and corresponding characteristic equations are derived. Fluid viscosity, gyroscopic inertial force, flow velocity, wave number, wave frequency, and decaying ratio are among parameters that their variations are discussed and some remarkable results are drawn. It was observed Kn could impress complex wave frequencies at both lower and higher ranges of wave numbers, while small-size had impression at higher range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.