Abstract

The present paper introduces a global/local approach for the analysis of three-dimensional (3D) stress states of composite laminated structures. It consists of a two-step procedure. In particular, the first step makes use of finite element modeling based on classical 2D plate elements, whereas a refined layer-wise model based on Carrera Unified Formulation (CUF) is adopted to extract the 3D stress and strain fields in some critical regions that may have arbitrary dimensions. This approach allows dealing with large local areas, increasing the accuracy of the static solution, along with the possibility of embedding this technique in more complex procedures, such as the least-weight design of large heterogeneous complex assemblies, stiffness optimization, or localized progressive failure analysis. The numerical results shown in this paper want to assess the physical and numerical validity of the global/local approach. Particular attention is focused on the choice of the dimensions of the local area (patch) subjected to detailed refined analysis. Also, the convergence properties of the present hybrid FE model are discussed. The first examples deal with laminated composites. Then, the advantages of this methodology are further highlighted by considering free-edge problems and a complex wing structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.