Abstract

The wave packet dynamics of the photodetachment of H- near metal surface is studied by using the wave packet evolution and the autocorrelation function. The results show that the evolution and the revival structure of the detached electron depend not only on the ion-surface distance, but also on pulse width and initial pulse momentum. Therefore, we can control the wave packet dynamics of H- near a metal surface by changing the ion-surface distance and the parameter of the pulse laser. Besides, the electronic image state lifetime can also affect the wave packet evolution and the autocorrelation function. We find that with considering the electronic state lifetime,the amplitude of the quantum probability density decreases gradually with time,the whole wave packet structure has a significant attenuation and the lifetime can weaken the interference phenomenon in the process of wave packet evolution. Through the research on the autocorrelation function of electronic wave packet, we find that the wave packet exhibits a good revival structure without considering the lifetime of the state lifetime; however, with considering the lifetime of the state lifetime, the wave packet periodically collapses and expands with time,but after a period of time, the revival structure disappears. We hope that our theoretical study will provide some references for the experimental research of wave packet dynamics of negative ion near surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call