Abstract

In the present study, the wave interaction with the very large floating structures (VLFSs) is analyzed considering the small amplitude wave theory. The VLFS is modeled as a 2D floating elastic plate with infinite width based on Timoshenko–Mindlin plate theory. The eigenfunction expansion method along with mode-coupling relation is used to analyze the hydroelastic behavior of VLFSs in finite water depth. The contour plots for the plate covered dispersion relation are presented to illustrate the complexity in the roots of the dispersion relation. The wave scattering behavior in the form of reflection and transmission coefficients are studied in detail. The hydroelastic performance of the elastic plate interacting with the ocean wave is analyzed for deflection, strain, bending moment, and shear force along the elastic plate. Further, the study is extended for shallow water approximation, and the results are compared for both Timoshenko–Mindlin plate theory and Kirchhoff’s plate theory. The significance and importance of rotary inertia and shear deformation in analyzing the hydroelastic characteristics of VLFSs are presented. The study will be helpful for scientists and engineers in the design and analysis of the VLFSs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call