Abstract

ABSTRACT The attenuation of the incident wave interacting with a very large floating structure (VLFS) in the presence of vertical barriers is analysed considering small amplitude wave theory. The VLFS is considered to be articulated and is modelled based on Timoshenko-Mindlin plate theory. The eigenfunction expansion method along with the orthogonal mode-coupling relation is employed for the case of finite water depth. The numerical study is performed to analyse the wave reflection, transmission and dissipation characteristics due to the articulated floating plate for the case of bottom standing and surface piercing vertical porous barriers. The hydroelastic behaviour in terms of deflection and strain for an articulated floating thick elastic plate in the presence of porous barriers is analysed. The study reveals that the magnitude of wave attenuation is enhanced due to the presence of vertical porous barriers and also provides an understanding in mitigating the structural response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call