Abstract
We report an experimental study of the motion of magnetized beads driven by a travelling-wave magnetic field. For sufficiently large wave speed, we report the existence of a backward motion, in which the sphere can move in the direction opposite to the driving wave. We show that the transition to this new state is strongly subcritical and can lead to chaotic motion of the bead. For some parameters, this counterpropagation of the sphere can be one order of magnitude faster than the driving-wave speed. These results are understood in the framework of a model based on the interplay among solid friction, air resistance and magnetic torque.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.