Abstract
In the paper we develop the dressing method for the solution of the two-dimensional periodic Volterra system with a period N. We derive soliton solutions of arbitrary rank k and give a full classification of rank 1 solutions. We have found a new class of exact solutions corresponding to wave fronts which represent smooth interfaces between two nonlinear periodic waves or a periodic wave and a trivial (zero) solution. The wave fronts are non-stationary and they propagate with a constant average velocity. The system also has soliton solutions similar to breathers, which resembles soliton webs in the KP theory. We associate the classification of soliton solutions with the Schubert decomposition of the Grassmannians GrR(k,N) and GrC(k,N).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have