Abstract

The problem of wave-front estimation from wave-front slope measurements has been examined from a least-squares curve fitting model point of view. It is shown that the slope measurement sampling geometry influences the model selection for the phase estimation. Successive over-relaxation (SOR) is employed to numerically solve the exact zonal phase estimation problem. A new zonal phase gradient model is introduced and its error propagator, which relates the mean-square wave-front error to the noisy slope measurements, has been compared with two previously used models. A technique for the rapid extraction of phase aperture functions is presented. Error propagation properties for modal estimation are evaluated and compared with zonal estimation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.