Abstract
We analyse an algorithm of transition between Cauchy problems for second-order wave equations and first-order symmetric hyperbolic systems in case the coefficients as well as the data are non-smooth, even allowing for regularity below the standard conditions guaranteeing well-posedness. The typical operations involved in rewriting equations into systems are then neither defined classically nor consistently extendible to the distribution theoretic setting. However, employing the nonlinear theory of generalized functions in the sense of Colombeau we arrive at clear statements about the transfer of questions concerning solvability and uniqueness from wave equations to symmetric hyperbolic systems and vice versa. Finally, we illustrate how this transfer method allows to draw new conclusions on unique solvability of the Cauchy problem for wave equations with non-smooth coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.