Abstract

We study existence, uniqueness, and distributional aspects of generalized solutions to the Cauchy problem for first-order symmetric (or Hermitian) hyperbolic systems of partial differential equations with Colombeau generalized functions as coefficients and data. The proofs of solvability are based on refined energy estimates on lens-shaped regions with spacelike boundaries. We obtain several variants and also partial extensions of previous results in Oberguggenberger (1989), Lafon and Oberguggenberger (1991), and Hörmann (2004) [26,23,16] and provide aspects accompanying related recent work in Oberguggenberger (2009), Garetto and Oberguggenberger (2011) [28,10,9].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.