Abstract

An asymmetric body with a sharp leading edge and a rounded trailing edge produces a smaller wave disturbance moving forwards than backwards, and this is reflected in the wave drag coefficient. This experimental fact is not captured by Michell’s theory for wave drag (Michell Lond. Edinb. Dubl. Phil. Mag. J. Sci., vol. 45 (272), 1898, pp. 106–123). In this study, we use a tow-tank experiment to investigate the effects of asymmetry on wave drag, and show that these effects can be replicated by modifying Michell’s theory to include the growth of a symmetry-breaking boundary layer. We show that asymmetry can have either a positive or a negative effect on drag, depending on the depth of motion and the Froude number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.