Abstract

We analyze the flow of a polydisperse suspension of methane droplets in a plane channel with simultaneous coagulation of disperse fraction particles under the action of the wave field generated in the carrier medium—gaseous methane—by oscillating parts of the channel walls. The frequency of in-phase oscillations of the walls is equal to the fundamental frequency for the transverse cross section of the channel filled with gaseous methane. In the vicinity of the radiator, a standing wave of the velocity field forms in the direction transverse to the flow and the intensity of coagulation of particles from different fractions upon their collisions increases due to mutual displacement. We describe the evolution of the dispersiveness of a vapor-droplet flow under the action of the wave field of a standing wave whose front moves transversely to the flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call