Abstract

The behavior of confined suspensions of soft droplets under pressure-driven flow, passing an obstacle within a planar channel, is investigated by means of a mesoscopic lattice Boltzmann model capable of simulating soft non-coalescing droplets. The simulations reveal that the threshold of the pore size, below which the flux vanishes, is between 1 and 2 droplet diameters, and increases with the packing fraction. Moreover, we show that the classical Beverloo relation between the total flux and the pore size is not suitable for the soft suspensions considered here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call