Abstract

Resistance measurements and direct spectroscopic investigations were used to monitor the surface reaction path between oxygen and water at the surface of SnO 2. The experiments were carried out at high sensor operation temperature (330 and 400 °C) and at a constant background of water vapour. We found that there is a significant interaction between adsorbed oxygen ions and water vapour, which results in formation of terminal hydroxyl groups on tin dioxide surface. This observation is an evidence of water–oxygen interaction and so brings a new insight to the mechanistic modelling of the sensing with tin dioxide based sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.