Abstract

The formation of hydride derivatives of sulfonated palladium(II) salan (hydrogenated salen) complexes was studied with DFT methods. The non-hydrolytic property, chirality, and flexibility lead to a significant difference compared to salen derivatives. We made a detailed computational study to understand the relevance of the flexibility in contrast to the rigid salen complex. Two main pathways were investigated: one of them was a direct monohydride formation where the oxygen of the phenolate group was substituted by a hydrogen molecule followed by a proton transfer. Another was an indirect monohydride formation involving the substitution of phenolate arm by a solvent water molecule in the first step and subsequent reaction with H2 in the second. We focused on weak interactions among the Pd-complex and water molecules. Trigonal, square, and diamond motifs of H-bond networks were found around the oxygen atom of the phenolate arm which is crucial during the proton transfer step, however, substitution steps prefer chain type motifs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call