Abstract

Density functional theory method, at the B3LYP/6–311+G(d, p) level has been used to explore the geometries, relative energies, and electronic properties of all hypothetically possible prototropic tautomers of imexon. The specific interactions of the tautomeric forms of imexon with one and two solvating water molecules have been investigated. The relative stability order of the complexes remains unchanged upon interaction with one water molecule. The addition of a second water molecule, however, stabilizes the oxo-amino form more than the oxo-imino structure. The bulk water environment has been simulated by a combination of microhydration and the conductor-like polarizable continuum model. The energy profile corresponding to the prototopic tautomerisms connecting oxo-imino form with oxo-amino, hydroxyl-amino, and one rare tautomer has been studied. We found that the tautomerism activation barriers are high enough as to conclude that only the oxo-imino tautomer should be found in the gas phase. Our results present clear evidence that microhydration with one and two solvating water molecules considerably lower these barriers by a concerted multiple proton transfer mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.