Abstract
Laser machining is an advanced technology that provides efficiency and precision for the processing of wood. In this paper, the ablation mechanism of wood processed via a water-jet assisted nanosecond laser was analyzed. The influences of cutting speed and laser power on the cutting width of northeast China ash wood (NCAW) (Fraxinus mandshurica Rupr.) with and without the water-jet assisted system were evaluated. The surface morphology of the kerf of processed NCAW was observed via scanning electron microscopy (SEM). Furthermore, a factorial design experiment was carried out to analyze the effects of process parameters on the cutting width. Additionally, the experimental results were processed by multilinear regression analysis. The results showed that with the water-jet assisted system, the minimum value of the cutting width was 0.18 mm when the cutting speed was 50 mm/s and the laser power was 6 W, and good surface quality was obtained. The experimental results were processed by an analysis of variance and multilinear regression analysis. The predicted model, effectively validated by the experiments, had good prediction accuracy, which provided a theoretical basis for predicting the cutting width of NCAW processed by a water-jet assisted laser.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.