Abstract
Water intrusion–extrusion in hydrophobic microporous AFI, IFR, MTW and TON pure silica zeolites (zeosils) has been investigated through molecular dynamics (MD) simulations. It was found that intruded water volumes correlate with the free volume of the zeosil unit cells. Calculated adsorption isotherms allowed us to estimate the amounts of water intruded, and deviations from experiments (lower experimental with respect to calculated intrusion pressures) have been explained in terms of connectivity defects in the synthesized materials. Water phase transitions in defectless zeosils occur in a narrow range at high pressure. On the basis of a simple model, we derived a thermodynamic equation that allows one to estimate the intrusion pressure with few parameters, which are easy to obtain, such as fractional free volume of zeosil and the intrusion pressure of a reference system. The structural properties of water clusters inside the zeosil micropores have been interpreted from the analysis of the MD simulations....
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.