Abstract

Waterbells result from the impact of a low-viscosity liquid jet (diameter D0, velocity U0) on a solid surface (characteristic length Di) of similar size (Di ∼ D0). Their stationary shape mainly results from the equilibrium between inertia and surface tension. When closed, this shape becomes sensitive to the pressure difference that occurs across the sheet and the bell can become unstable or exhibit stationary cusps. We first review the work done on the shape and stability of waterbells, and then address the case of “special bells,” like swirling bells, polygonal bells, and reverse bells. Finally, we discuss the singular limit of the “flat bell” or liquid sheet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.