Abstract

An isotope mass balance technique is applied to quantify water yield and refine a steady-state critical acid loadings assessment for 49 lakes in hydrologically complex, wetland-rich terrain of northeastern Alberta. The approach uses physical and climatological data combined with site-specific measurements of evaporative isotopic enrichment of 2H and 18O in lake water to measure lake residency and ungauged runoff to lakes. Mean water yields to individual lakes across the region over a 3-year period are estimated to range from 5 to 395 mm·year–1, with a standard deviation of two times the predicted estimates based on interpolation of gauged stream flow from broad-scale watersheds in the area. Comparison of the method with longer-term Water Survey of Canada hydrometric data suggests very similar average water yields for moderate- to large-sized watersheds. However, the isotope-based estimates appear to capture extreme low water yields in flat, disconnected areas and extreme high water yields in other areas thought to be related to stronger connections to regional groundwater flow systems. For aquatic ecosystems of northeastern Alberta, an area expected to be affected by acid deposition from regional oil sands development, continued refinement of the technique is important to accurately assess critical loads for ungauged systems, particularly those in low-yield settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.