Abstract

Target loads for acid deposition in the Netherlands, as formulated in the Dutch environmental policy plan, are based on critical load calculations at the end of the 1980s. Since then knowledge on the effect of acid deposition on terrestrial ecosystems has substantially increased. In the early 1990s a simple mass balance model was developed to calculate critical loads. This model was evaluated and the methods were adapted to represent the current knowledge. The main changes in the model are the use of actual empirical relationships between Al and H concentrations in the soil solution, the addition of a constant base saturation as a second criterion for soil quality and the use of tree species-dependant critical Al/base cation (BC) ratios for Dutch circumstances. The changes in the model parameterisation and in the Al/BC criteria led to considerably (50%) higher critical loads for root damage. The addition of a second criterion in the critical load calculations for soil quality caused a decrease in the critical loads for soils with a median to high base saturation such as loess and clay soils. The adaptation hardly effected the median critical load for soil quality in the Netherlands, since only 15% of the Dutch forests occur on these soils. On a regional scale, however, critical loads were (much) lower in areas where those soils are located.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call