Abstract

Carbon Molecular Sieve (CMS) membranes have been extensively studied for gas separations. Many gas separation applications involve humidified streams, but reports on water vapor transport in CMS membranes are limited. In this study, water permeability, diffusivity, and solubility were determined as a function of water activity for CMS membranes. Water transport properties of membranes synthesized at different pyrolysis temperatures (550 °C and 800 °C) and with different polyimide precursors were examined. Water sorption followed Type V isotherms as previously observed for the adsorption of water in microporous carbons. Water permeability was much higher at all water activity values for CMS samples prepared at lower pyrolysis temperature. Water permeabilities as a function of water activity of the three different polyimides pyrolyzed at 800 °C were very similar. Water permeability of CMS membranes was high compared to many other polymeric materials, showing potential for dehydration applications. Finally, the steady-state water vapor diffusivity (Dss), estimated from steady state permeability and equilibrium sorption measurements, was compared to the experimental transient diffusivity (D), matching reasonably well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call