Abstract
The influence of water vapor on the production of nitric acid in the gas-phase HO(2) + NO reaction was determined at 298 K and 200 Torr using a high-pressure turbulent flow reactor coupled with a chemical ionization mass spectrometer. The yield of HNO(3) was found to increase linearly with the increase of water concentration reaching an enhancement factor of about 8 at [H(2)O] = 4 x 10(17) molecules cm(-3) ( approximately 50% relative humidity). A rate constant value k(1bw) = 6 x 10(-13) cm(3) molecule(-1) s(-1) was derived for the reaction involving the HO(2)xH(2)O complex: HO(2)xH(2)O + NO --> HNO(3) (1bw), assuming that the water enhancement is due to this reaction. k(1bw) is approximately 40 times higher than the rate constant of the reaction HO(2) + NO --> HNO(3) (1b), at the same temperature and pressure. The experimental findings are corroborated by density functional theory (DFT) calculations performed on the H(2)O/HO(2)/NO system. The significance of this result for atmospheric chemistry and chemical amplifier instruments is briefly discussed. An appendix containing a detailed consideration of the possible contribution from the surface reactions in our previous studies of the title reaction and in the present one is included.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have