Abstract

Physically crosslinked microgels (PCMs) offer a biocompatible platform for various biomedical applications. However, current PCM fabrication methods suffer from their complexity and poor controllability, due to their reliance on altering physical conditions to initiate gelation and their dependence on specific materials. To address this issue, a novel PCM fabrication method is devised, which employs water transport-induced liquid-liquid phase separation (LLPS) to trigger the intermolecular interaction-supported sol-gel transition within aqueous emulsion droplets. This method enables the controllable and facile generation of PCMs through a single emulsification step, allowing for the facile production of PCMs with various materials and sizes, as well as controllable structures and mechanical properties. Moreover, this PCM fabrication method holds great promise for diverse biomedical applications. The interior of the PCM not only supports the encapsulation and proliferation of bacteria but also facilitates the encapsulation of eukaryotic cells after transforming the system into an all-aqueous emulsion. Furthermore, through appropriate surface functionalization, the PCMs effectively activate T cells in vitro upon coculturing. This work represents an advancement in PCM fabrication and offers new insights and perspectives for microgel engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.