Abstract

Summary Chemical models of atmospheric particles are vital in understanding the role of aerosol particles in atmospheric chemistry, air pollution, human health, and climate change. Advancing these models requires new frameworks that can realistically predict how critical particle properties evolve. We present such a framework for predicting particle phase separation and which morphology will prevail; this controls how each particle interacts with and affects the atmosphere. We studied the mixing behavior of α-pinene secondary organic aerosol (SOA) with different organic phases, as relative humidity was varied to determine the interplay between polarity, miscibility, interfacial tension, and the resulting morphology. Using measurements from aerosol optical tweezers experiments and literature data, a general trend in morphology with increasing atmospheric oxidation was observed, from biphasic partially engulfed (where both phases are immediately accessible to the gas phase) to biphasic core shell (where the organic shell conceals the core) and finally to a single-phase, homogeneous morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.