Abstract
A one-dimensional model has been developed to describe the kinetics of water transport in a cluster of closely packed cells. For the case of human red blood cells, the intracellular medium has been treated as an ideal, hydrated, nondilute multicomponent electrolyte solution. Results show that the volume flux of water out of the interior cells of the cluster lags behind that of the exterior cells. At any given temperature (or time), the amount of water retained within a cluster of closely packed cells of a given type exceeds (on an overall percentage basis) the amount of water retained within a single isolated cell of the same type. For a given cooling rate the probability of intracellular ice nucleation at any given temperature will therefore be greater for cells in the interior of a cluster, and the survival signature for a cell cluster should peak at a cooling rate which is less than the corresponding optimal value for a single, isolated cell. These results are consistent with experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.