Abstract
Spread of antibiotic resistance genes (ARGs) in aquatic ecosystems poses a significant global challenge to public health. The potential effects of water temperature perturbation induced by specific water environment changes on ARGs transmission are still unclear. The conjugate transfer of plasmid-mediated ARGs under water temperature perturbation was investigated in this study. The conjugate transfer frequency (CTF) was only 7.16 × 10−7 at a constant water temperature of 5 °C, and it reached 2.18 × 10−5 at 30 °C. Interestingly, compared to the constant 5 °C, the water temperature perturbations (cooling and warming models between 5–30 °C) significantly promoted the CTF. Intracellular reactive oxygen species was a dominant factor, which not only directly affected the CTF of ARGs, but also functioned indirectly via influencing the cell membrane permeability and cell adhesion. Compared to the constant 5 °C, water temperature perturbations significantly elevated the gene expression associated with intercellular contact, cell membrane permeability, oxidative stress responses, and energy driven force for CTF. Furthermore, based on the mathematical model predictions, the stabilization times of acquiring plasmid maintenance were shortened to 184 h and 190 h under cooling and warming model, respectively, thus the water temperature perturbations promoted the ARGs transmission in natural conditions compared with the constant low temperature conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have