Abstract
The impingement process of water surge onto a vertical wall and the impact pressure are studied analytically in this work. We propose a new initial-boundary value problem particularly for the fluid motion near the corner of the horizontal bed and the vertical wall. The explicit solutions of the velocity and the pressure fields are analytically obtained using the self-similarity method under some verifiable physical assumptions. The impact pressure is found to be proportional to the product of the squared incident surge front velocity and the density of water, with a constant coefficient of around 0.867. We compare the analytical solution of the impact pressure with some existing laboratory data. The analytical solution agrees with the median value of the stochastic data of impact pressure from laboratory experiments. Subsequently, the velocity and the pressure fields from the analytical model are compared to the numerical simulation results based on OpenFOAM. The comparisons validate the physical assumptions made in the analytical derivation, demonstrating fair consistency. The analytical model successfully describes the early stage of the contact process between the surge front and the wall and provides a theoretical basis for the physics of water surge impingement.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have