Abstract
The atomic-level structure of water at mineral surfaces is an important controlling factor in interfacial reactions such as foreign ion incorporation, crystal growth and dissolution, and redox reactions. Molecular dynamics simulations with four different models based on interatomic potentials have been carried out to determine the atomic-level structure of three hematite–water interfaces. In addition, for each of the three surfaces, different terminations or protonation schemes were considered. The availability of surface X-ray scattering data for the surfaces considered here allowed for an extensive comparison with experimental data. Qualitatively, with the exception of one termination with one model, all models predict the correct arrangement of water molecules at the interface. Quantitatively, the agreement with experimental positions, distances, and layer occupancies is good to excellent, especially given the range of values reported in published experimental studies. Therefore, this study provides further evidence that interatomic potential models can be used to reliably predict the structure of mineral–water interfaces. In addition, molecular simulations are a valuable source of information to complement surface X-ray scattering experiments owing to their ability to directly determine the position of hydrogen atoms and to yield three-dimensional predicted structures at no added cost, as demonstrated in this work. Indeed, the molecular dynamics trajectories were analyzed to determine the surface structural controls on the interfacial water structure. Each of the three surface functional groups present at the surfaces considered in this work, namely, triply-coordinated oxo, doubly-coordinated hydroxo, and singly-coordinated aquo groups, was found to form similar hydrogen bond configurations with adsorbed water molecules at all surfaces. Oxo groups accept long-lasting and linear hydrogen bonds from adsorbed water molecules; hydroxo groups can form hydrogen bonds with other surface functional groups as well as with adsorbed water molecules; and aquo groups normally only donate hydrogen bonds to other surface groups or adsorbed water molecules. Additionally, the majority of adsorbed water molecules were found to adopt multiple configurations and orientations. This information was used to evaluate three-dimensional structural models of the interfaces, which were previously derived experimentally from one-dimensional electron density profiles and steric considerations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.