Abstract

The hydrogen bond in the water dimer is studied within the SCF-MO-LCAO framework, using a large Gaussian basis set to approximate the wavefunction. A geometry search restricted to structures with linear and bifurcated hydrogen bonds is performed and the associated potential energy curves are displayed. The minimum energy geometry of the water dimer is found to form a linear hydrogen bond with a hydrogen bond distance of 2.04 A and a binding energy of 4.84 kcal/mole relative to the monomer (exp. 5.0 kcal/mole). No semistable structures are found. The charge density and charge density difference maps are discussed for the structure with a linear hydrogen bond for different subsystem (water) separations, including the minimum energy geometry. The dipole moment of the dimer is computed to be 1.69 a.u. The shift of the IR bands on hydrogen bond formation is explained qualitatively by comparing the potential energy curves of the hydrogen in the OH-bonds of the monomer and the dimer, and the intensity increase of the fundamental OH-stretching band is computed. The shift of the proton magnetic resonance signal is discussed qualitatively by inspecting the charge density change on hydrogen bond formation, and the average diamagnetic shielding is calculated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.