Abstract

Plants face many environmental challenges and have evolved different strategies to defend against stress. One strategy is the establishment of mutualistic associations with endophytic microorganisms which contribute to plant defense and promote plant growth. The fungal entomopathogen Metarhizium robertsii is also an endophyte that can provide plant-protective and growth-promoting benefits to the host plant. We conducted a greenhouse experiment in which we imposed stress from deficit and excess soil moisture and feeding by larval black cutworm (BCW), Agrotis ipsilon, to maize plants that were either inoculated or not inoculated with M. robertsii (Mr). We evaluated plant growth and defense indicators to determine the effects of the interaction between Mr, maize, BCW feeding, and water stress. There was a significant effect of water treatment, but no effect of Mr treatment, on plant chlorophyl, height, and dry biomass. There was no effect of water or Mr treatment on damage caused by BCW feeding. There was a significant effect of water treatment, but not Mr treatment, on the expression of bx7 and rip2 genes and on foliar content of abscisic acid (ABA), 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and gibberellin 19 (GA19), whereas GA53 was modulated by Mr treatment. Foliar content of GA19 and cis-Zeatin (cZ) was modulated by BCW feeding. In a redundancy analysis, plant phenology, plant nutrient content, and foliar DIMBOA and ABA content were most closely associated with water treatments. This study contributes toward understanding the sophisticated stress response signaling and endophytic mutualisms in crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.