Abstract
Biological organisms engineer peptide sequences to fold into membrane pore proteins capable of performing a wide variety of transport functions. Synthetic de novo-designed membrane pores can mimic this approach to achieve a potentially even larger set of functions. Here we explore water, solute, and ion transport in three de novo designed β-barrel membrane channels in the 5-10 Å pore size range. We show that these proteins form passive membrane pores with high water transport efficiencies and size rejection characteristics consistent with the pore size encoded in the protein structure. Ion conductance and ion selectivity measurements also show trends consistent with the pore size, with the two larger pores showing weak cation selectivity. MD simulations of water and ion transport and solute size exclusion are consistent with the experimental trends and provide further insights into structure-function correlations in these membrane pores.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have