Abstract

Construction of receptors with binding sites of specific size, shape, and functional groups is important to both chemistry and biology. Covalent imprinting of a photocleavable template within surface-core doubly cross-linked micelles yielded carboxylic acid-containing hydrophobic pockets within the water-soluble molecularly imprinted nanoparticles. The functionalized binding pockets were characterized by their binding of amine- and acid-functionalized guests under different pH values. The nanoparticles, on average, contained one binding site per particle and displayed highly selective binding among structural analogues. The binding sites could be modified further by covalent chemistry to modulate their binding properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call