Abstract

Strongly σ-donating N-heterocyclic carbenes (NHCs) have revived research interest in the catalytic chemistry of iron, and are now also starting to bring the photochemistry and photophysics of this abundant element into a new era. In this work, a heteroleptic Fe(II) complex (1) was synthesized based on sequentially furnishing the Fe(II) center with the benchmark 2,2'-bipyridine (bpy) ligand and the more strongly σ-donating mesoionic ligand, 4,4'-bis(1,2,3-triazol-5-ylidene) (btz). Complex 1 was comprehensively characterized by electrochemistry, static and ultrafast spectroscopy, and quantum chemical calculations and compared to [Fe(bpy)3](PF6)2 and (TBA)2[Fe(bpy)(CN)4]. Heteroleptic complex 1 extends the absorption spectrum towards longer wavelengths compared to a previously synthesized homoleptic Fe(II) NHC complex. The combination of the mesoionic nature of btz and the heteroleptic structure effectively destabilizes the metal-centered (MC) states relative to the triplet metal-to-ligand charge transfer ((3)MLCT) state in 1, rendering it a lifetime of 13 ps, the longest to date of a photochemically stable Fe(II) complex. Deactivation of the (3)MLCT state is proposed to proceed via the (3)MC state that strongly couples with the singlet ground state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.