Abstract

The application of spectrally unique, bright, and water-soluble fluorescent dyes is indispensable for the analysis of biological systems. Multiparameter flow cytometry is a powerful tool for characterization of mixed cell populations. To discriminate the different cell populations, they are typically stained by a set of fluorescent reagents, e.g., antibody-fluorophore conjugates. The number of parameters which can be studied simultaneously strongly depends on the availability of reagents which can be differentiated by their spectral properties. In this study a series of fluorescent polymer dyes was developed, that can be excited with a single violet laser (405 nm) but distinguished by their unique emission spectra. The polyfluorene-based polymers can be used on their own, or in combination with covalently bound small-molecule dyes to generate energy transfer constructs to red-shift the emission wavelength based on Förster resonance energy transfer (FRET). The polymer dyes were utilized in a biological flow cytometry assay by conjugating several of them to antibodies, demonstrating their effectiveness as reagents. This report represents the first systematic investigation of structure-property relationships for this type of fluorescent dyes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call