Abstract

While plastics like polyethylene terephthalate can already be degraded efficiently by the activity of hydrolases, other synthetic polymers like polyurethanes (PUs) and polyamides (PAs) largely resist biodegradation. In this study, we solved the first crystal structure of the metagenomic urethanase UMG‐SP‐1, identified highly flexible loop regions to comprise active site residues, and targeted a total of 20 potential hot spots by site‐saturation mutagenesis. Engineering campaigns yielded variants with single mutations, exhibiting almost 3‐ and 8‐fold improved activity against highly stable N‐aryl urethane and amide bonds, respectively. Furthermore, we demonstrated the release of the corresponding monomers from a thermoplastic polyester‐PU and a PA (nylon 6) by the activity of a single, metagenome‐derived urethanase after short incubation times. Thereby, we expanded the hydrolysis profile of UMG‐SP‐1 beyond the reported low‐molecular weight carbamates. Together, these findings promise advanced strategies for the bio‐based degradation and recycling of plastic materials and waste, aiding efforts to establish a circular economy for synthetic polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.