Abstract

Abstract A water resources vulnerability (WRV) assessment is important to maintain water resources safety in a basin. In this paper, an index system, including four subsystems -- the hydrological subsystem, the socioeconomic subsystem, the eco-environment subsystem and the hydraulic engineering subsystem, is constructed for an integrated WRV assessment of the Zhangjiakou region of the Guanting Reservoir Basin, North China. The parametric-system (PS) method based on background value is used for the quantitative WRV assessment of each subsystem and of the integrated water resources system. The results of the calculations show that the degree of vulnerability of Guanting Reservoir Basin is quite serious, with Zhangjiakou City being extremely vulnerable, and Yanqing County and Zhuolu County mildly vulnerable. The assessment process and results, as well as the characteristics of the method used, have been compared with those of the fuzzy optimization (FO) method and the grey relational analysis (GRA) method. The parametric-system (PS) method is appropriate for level classification and rank analysis of many samples in the system, with the obvious advantage of employing the simple process of linear calculation for both the assessment and reference systems. In practical calculation, multiple methods should be used comprehensively, so as to provide a more rational decision-making basis for water resources management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.