Abstract

The rapid growth of developing countries has placed unprecedented pressure on water resources, severely hindering the realization of sustainable development goal 6 (SDG 6) in river basins. In this study, sustainable water resource utilization (SWRU) in the Yellow River basin (Shaanxi section) from 2005 to 2019 is evaluated through an analysis of water resource overload combined with the water footprint (WF) and the water planetary boundary (WPB) and an analysis of water resource utilization quality combined with the WF and city development index (CDI) based on the coupled coordination model. Then, the results are incorporated into the drive-pressure-state-impact-response framework to analyze the impacts of the socioeconomic system on SWRU and the feedback effect of related policies. The results show that there were obvious differences in the spatiotemporal evolution characteristics of the WF in different geographical units. The WF of Guanzhong first increased and then decreased, and the WF of Northern Shaanxi grew continuously. The water deficit state is increasing. Although the coordination level between the WF and CDI in the basin increased by 500.31%, it was characterized by nonequilibrium and volatility. Compared to water resource endowment, socioeconomic development and government policies have greater impacts on SWRU; furthermore, the influencing factors demonstrate spatial variability, revealing the complexity of achieving SDG 6 in the basin. As policy implications, adaptive water resource policies should be formulated on the basis of strengthening the overall basin management. This study provides a scientific basis for promoting the realization of SDG 6 through watershed water management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call