Abstract

The occurrence of heat often exacerbates drought stress by increasing atmospheric vapor pressure deficit and decreasing transpiration efficiency. Water replenishment to increase soil water content (SWC) could be an effective measure for improving crop resilience in heat. However, field observational evidence and the underlying mechanism for the mitigation were still limited. For this, two widely adopted maize hybrids (ZD958 and XY335) were planted in 2019 and 2020 in North China Plain with three growth environments during the reproductive stage: Normal field conditions (NC), High-temperature episodes (HT) and High-temperature together with elevating SWC (HT-W). Averagely, high temperature reduced grain yield by 21.6-65.1% in HT treatment compared with NC treatment. In HT-W treatment, grain yield was improved by 11.8-13.5% while SWC was elevated by 27.6–51.5% in 0–80 cm soil profile compared with HT treatment. In HT-W treatment, water replenishment to maize under heat stress improved canopy temperature and grain filling traits. The daily maximum canopy temperature was reduced by 1.0–3.1 °C. The effective grain-filling period (Pf) was extended by 1.0–1.6 days and the mean grain-filling rate (Gmean) was increased by 8.2%-10.5%. The improvement of Gmean and Pf for ZD958 was greater than XY335. Furthermore, the significant correlations between SWC in 0–20 cm soil profile and Gmean, and between SWC in 40–80 cm soil profile and Pf for both hybrids were observed. As a result, the fresh weight, volume, and water content of the grain were significantly improved in HT-W treatment compared with HT treatment. Overall, per unit increase in SWC (0–80 cm) decreased the daily maximum canopy temperature by 0.3 °C, increased dry matter accumulation by 1.5%, and grain yield by 2.1%. The information obtained from this study will be helpful to develop efficient management to protect against heat stress in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.