Abstract

The non-closure of surface energy balance, often encountered in eddy covariance (EC) measurements, raises a critical query: does this non-closure lead to underestimated scalar fluxes, particularly CO2 flux (Fc), when using the same theoretical framework in EC? To address this question, we utilize high-resolution large-eddy simulations (LESs) to explore correlations between energy flux imbalances and Fc imbalances in convective boundary layers, considering both homogeneous and idealized heterogeneous surfaces. Our findings reveal that the unsteady CO2 or storage represents a leading factor influencing Fc imbalance, especially notable when the entrainment ratio for Fc is large. Even in scenarios with uniform surface Fcs, heterogeneous thermally-generated turbulence resulting from variable surface sensible heat flux (H) can induce substantial horizontal flux divergence, magnifying Fc imbalance. While a linear correlation between the energy flux imbalance and Fc imbalance arises under shared causative mechanisms (e.g., storage), complex correlations emerge if their influencing factors differ, contingent upon surface heterogeneity and site location. This complexity underscores the limitations in applying the closing methods for energy flux imbalance to the Fc imbalance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.