Abstract

Non-optically active water quality parameters in water bodies are important evaluation indicators in monitoring urban water quality. Over the past years, satellite remote sensing techniques have increasingly been used to assess different types of substances in urban water bodies. However, it is challenging to retrieve accurate data for some of the non-optically active water quality parameters from satellite images due to weak spectral characteristics. This study aims to examine the potential of ZY1-02D hyperspectral images in retrieving non-optical active water quality parameters, including dissolved oxygen (DO), permanganate index (CODMn), and total phosphorus (TP) in urban rivers and lakes. We first simulated the in situ measured reflectance to the satellite equivalent reflectance using the ZY1-02D and Sentinel-2 spectral response function. Further, we used four machine learning models to compare the retrieval performance of these two sensors with different bandwidths. The mean absolute percentage errors (MAPE) are 24.28%, 18.44%, and 37.04% for DO, CODMn, and TP, respectively, and the root mean square errors (RMSE) are 1.67, 0.96, and 0.07 mg/L, respectively. Finally, we validated the accuracy and consistency of aquatic products retrieved from ZY1-02D and Sentinel-2 images. The remote sensing reflectance (Rrs) products of ZY1-02D are slightly overestimated compared to Sentinel-2 Rrs. ZY1-02D has high accuracy and consistency in mapping CODMn products in urban water. The results show the potential of ZY1-02D hyperspectral images in mapping non-optically active water quality parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call