Abstract
Many urban water bodies grapple with low flow flux and weak hydrodynamics. To address these issues, projects have been implemented to form integrated urban water bodies via interconnecting artificial lake or ponds with rivers, but causing pollution accumulation downstream and eutrophication. Despite it is crucial to assess eutrophication, research on this topic in urban interconnected water bodies is limited, particularly regarding variability and feasible strategies for remediation. This study focused on the Loucun river in Shenzhen, comprising an pond, river and artificial lake, evaluating water quality changes pre-(post-)ecological remediation and establishing a new method for evaluating the water quality index (WQI). The underwater forest project, involving basement improvement, vegetation restoration, and aquatic augmentation, in the artificial lake significantly reduced total nitrogen (by 43.58%), total phosphorus (by 79.17%) and algae density (by 36.90%) compared to pre-remediation, effectively controlling algal bloom. Rainfall, acting as a variable factor, exacerbated downstream nutrient accumulation, increasing total phosphorus by 4.56 times and ammonia nitrogen by 1.30 times compared to the dry season, and leading to algal blooms in the non-restoration pond. The improved WQI method effectively assesses water quality status. The interconnected water body exhibits obvious nutrient accumulation in downstream regions. A combined strategy that reducing nutrient and augmenting flux was verified to alleviate accumulation of nutrients downstream. This study provides valuable insights into pollution management strategies for interconnected pond-river-lake water bodies, offering significant reference for nutrient mitigation in such urban water bodies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.